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Abstract

In this paper we report on a prototype that implements a one-pass tableau method for Propositional
Linear Temporal Logic (shortly, PLTL). It is well known that PLTL is decidable and that PLTL
worst-case is PSPACE. The first tableau method for PLTL is due to P. Wolper in 1983 and it is a two-
pass method. In the first pass, it generates an auxiliary graph. This graph is checked and (possibly)
pruned in a second phase of the refutation procedure. The first one-pass tableau method for PLTL
was introduced by S. Schwendimann in 1998, and it is based on checking, on-the-fly and branch-by-
branch, the fulfillment of the eventuality formulas. The worst-case complexity of Wolper’s method
is EXPTIME, whereas Schwendimann’s method is 2EXPTIME. However, according to published
experiments, the implementation of the latter one-pass has outperformed the implementation of
the earlier tableau method. The reason seems to be that 2EXPTIME worst-case rarely occurs in
practice.
In this paper, we present a prototype that is a Haskell implementation of the tableau method
for PLTL that was introduced by J. Gaintzarain et al. in 2007. This more recent method is also
one-pass, but it does not perform any check of eventualities, instead it uses a mechanism to force
the fulfillment of eventualities, if it is possible, or otherwise it forces a contradiction. The practical
improvement of this kind of tools is a great challenge, since the worst-case complexity of this new
one-pass method is also bounded to 2EXPTIME.

Keywords: Propositional Linear Temporal Logic, Tableaux, Satisfiability, Implementation,
Haskell.

1 Introduction

Tableau systems are refutational proof methods that play a prominent role
in automated reasoning. In addition for decidable logics, tableau methods
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serve as decision procedures for the satisfiability of (sets of) formulas. The
propositional linear temporal logic, also named as PLTL, is decidable. The
first tableau method for PLTL was introduced by P. Wolper in [24] and it is a
two-pass method. In the first pass, it generates an auxiliary graph. This graph
is checked and (possibly) pruned in a second phase that analyzes whether the
so-called eventualities are fulfilled. An eventuality is a formula that asserts
that something does eventually hold, e.g. �ϕ (in words, ϕ eventually holds in
the future) and χU ϕ (in words, χ holds from now until ϕ eventually holds).
For example, to fulfill �ϕ or χU ϕ, ϕ must eventually be satisfied. Hence,
any path in the graph that includes �ϕ or χU ϕ, but does not include ϕ, is
pruned. At the end, an empty graph means unsatisfiability. Since Wolper’s
seminal paper [24], several authors (e.g. [11,2,20]) have found inspiration
in Wolper’s tableau to design tableau methods for different temporal and
modal logics. 3 In particular, Wolper’s two-pass tableau has been used in the
development of decision procedures or proof techniques for logics that extends
PLTL to some decidable fragment of the first-order temporal logic (e.g.[19]),
or to the branching case or with other features, such as agents, knowledge,
etc (e.g. [8]). Regarding implementations of this approach, we are aware of
the Janssen’s procedure ([14]) (“satisfiability” function in the PLTL module
of the LogicsWorkbench Version 1.1) and of the McGuire et al. procedure
([18]) (inside the STeP system [21]).
The first one-pass tableau method for PLTL was developed in [22] and it avoids
the second pass by adding extra information to the nodes in the tableau.
Some of this information must be synthesized bottom-up and it is needed
because the fulfillment of an eventuality in a single branch depends on the
other branches. Hence, it carries out an on-the-fly checking of the fulfillment
of every eventuality in every branch. Following [10], the method presented in
[22] will be called as the on-the-fly method. An implementation of the on-the-
fly method is incorporated as the “model” function in the PLTL module of
the Logics Workbench Version 1.1. This on-the-fly tableau method has been
successfully applied to other logics such as e.g. CTL ([1]) and PDL ([10]).
More recently, a new one-pass tableau method was introduced in [5] (see also
[6]) that is not based on the on-the-fly check of eventualities. Instead, it is
based on the fact that if a set of formulas ∆ ∪ {ϕU ψ} is satisfiable, there
must exist a modelM (with states s0, s1 . . .) that is minimal in the following
sense:

M satisfies either ∆ ∪ {ψ} or ∆ ∪ {ϕ,◦((ϕ ∧ ¬∆)U ψ)}
In other words, in a minimal model such that s0 |= ¬ψ, the so-called context
∆ cannot be satisfied from the state s1 until the state where ψ is true. In
order to trust the above fact, consider a model M′ with states s′0, s

′
1 . . .

3 The interested reader is referred to [9] for a good survey.
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such that s′0 |= ¬ψ and s′j |= ψ for some j ≥ 1, but there are some states
between s′1 and s′j that satisfy ∆, namely s′k1 , . . . , s

′
kn

. Then, let k be the
greatest j ∈ {k1, . . . , kn} such that s′j |= ∆. Then, the structure given by
s′k, s

′
k+1, . . . is also a model of ∆ ∪ {ϕU ψ} that is minimal in the above

sense. On the basis of this idea, in [6] a new kind of temporal deduction
was proposed as two dual systems of tableaux and sequents, respectively.
Regarding tableaux, the crucial rule for getting a one-pass method is the
one related to minimal models, which allows to split a branch containing
a node labelled by ∆ ∪ {ϕU ψ} into two branches respectively labelled by
∆ ∪ {ψ} or ∆ ∪ {ϕ,◦((ϕ ∧ ¬∆)U ψ)}. By means of this context-dependent
rule, and provided that the number of possible contexts ∆0,∆1, . . . is finite,
the fulfillment of ψ cannot be indefinitely postponed, without getting a
contradiction. We mean that, by keeping the succesive formulas of the form
(ϕ ∧ ¬∆0 ∧ . . . ∧ ¬∆n)U ψ as designated for the application of this crucial
rule, the process should reach a node whose context is one –namely ∆j– of
the ∆0, . . . ,∆n. Hence, to satisfy ∆j ∪ {(ϕ ∧ ¬∆0 ∧ . . . ∧ ¬∆n)U ψ}, either
∆j ∪ {ψ} or ∆j ∪ {ϕ ∧ ¬∆0 ∧ . . . ∧ ¬∆n} must be satisfied. But the second
set of formulas is clearly unsatisfiable since 1 ≤ j ≤ n. Due to the fact that
contexts play the just explained significant role in this method, we call it the
context-based tableau method.
It is well known (since [23]) that the worst-case complexity for PLTL is
PSPACE. The two-pass method works in EXPTIME, hence it is optimal,
while the worst-case complexity of both –on-the-fly and context-based– one-
pass methods is 2EXPTIME. However, the practical performance of tableau
methods for PLTL do not comply with the worst-case complexity results.
Indeed, the experiments in [12] and [7] showed that the on-the-fly method
outperforms the two-pass method. We conjecture that this phenomenon is due
to the fact that the 2EXPTIME worst-case behaviour rarely arises for both
–on-the-fly and context-based– methods. A non-experimental assessment on
worst-case probability of the three methods seems to be very interesting, but
not easy. In this paper, we provide a system description of our implementation
of the context-based method in Haskell. This is the version 1.0 of the system
ttm that is available at http://www.sc.ehu.es/jiwlucap/TTM.html. Some work
remain to be done on improving this prototype and on experimental analysis
for comparing our context-based method with other decision methods for
PLTL, in particular with both the two-pass and the on-the-fly tableau method.

Outline. To make the paper self-contained, it begins with short to introduc-
tions the logic PLTL (Section 2) and to the context-based tableau method
(Sections 3). For more details the reader is referred to [5,6]. The description
of our prototype system is given in Section 4 where we report on the system
architecture and also on some Haskell implementation details. Section 5 is de-
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voted to the functionalities that the prototype provides to the user. Finally,
in Section 6, an overview of our project’s status and future direction is given.

2 Basics of PLTL

PLTL-formulas are built using propositional variables (p, q, . . .), classical con-
nectives ¬ and ∧, and the temporal connectives ◦ (for next) and U (for
until). We also use the constant proposition F for falsehood. Other connec-
tives are defined in terms of the previous ones: T ≡ ¬F, ϕ∨ψ ≡ ¬(¬ϕ∧¬ψ),
ϕRψ ≡ ¬(¬ϕU ¬ψ), �ϕ ≡ TU ϕ, �ϕ ≡ ¬�¬ϕ. Note that �ϕ ≡ FRϕ.
The defined connectives will be used as abbreviations for readability. PLTL-
formulas of the form ϕU ψ and �ϕ are called eventualities.
Formally, a PLTL-structure M is a pair (SM, VM) such that SM is a denu-
merable sequence of states s0, s1, s2, . . . and VM is a map VM : SM → 2Prop.
Intuitively, VM(s) specifies which atomic propositions are (necessarily) true in
the state s.
The formal semantics of PLTL-formulas is given by the truth of a formula
ϕ in the state sj of a PLTL-structure M is denoted by 〈M, sj〉 |= ϕ and is
inductively defined as follows:

• 〈M, sj〉 6|= F

• 〈M, sj〉 |= p iff p ∈ VM(sj) for p ∈ Prop

• 〈M, sj〉 |= ¬ϕ iff 〈M, sj〉 6|= ϕ

• 〈M, sj〉 |= ϕ ∧ ψ iff 〈M, sj〉 |= ϕ and 〈M, sj〉 |= ψ

• 〈M, sj〉 |= ◦ϕ iff 〈M, sj+1〉 |= ϕ

• 〈M, sj〉 |= ϕU ψ iff there exists k ≥ j such that 〈M, sk〉 |= ψ and for every
j ≤ i < k it holds 〈M, si〉 |= ϕ.

This semantics is extended to the defined connectives using each definition.
From the semantical point of view, (finite) sets of formulas are equivalent to
their conjunction. Given a set Φ = {ϕ1, . . . , ϕn} we will use

∧
Φ to denote

ϕ1∧ . . .∧ϕn and ¬Φ to denote the formula ¬
∧

Φ or equivalently (¬ϕ1∨ . . .∨
¬ϕn). In particular, when Φ is empty, ¬Φ and

∧
Φ are the constants F and

T, respectively.
A PLTL-structure M is cyclic if its (infinite) sequence of states SM is a path
over a cyclic sequence of states. Any satisfiable PLTL-formula has a cyclic
model ([3]). Indeed, the system ttm finds (and returns to the user) a cyclic
model for every satisfiable input.
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Rule α A(α)

(¬¬) ¬¬ϕ {ϕ}

(∧) ϕ ∧ ψ {ϕ, ψ}

(¬◦) ¬◦ϕ {◦¬ϕ}

Rule β B1(β) B2(β)

(¬∧) ¬(ϕ ∧ ψ) {¬ϕ} {¬ψ}

(¬U ) ¬(ϕU ψ) {¬ϕ,¬ψ} {ϕ,¬ψ,¬◦(ϕU ψ)}

β-(U ) ϕU ψ {ψ} {ϕ,¬ψ,◦(ϕU ψ)}

Rule κ C1(κ) C2(κ,∆)

κ-(U ) ϕU ψ {ψ} {ϕ,¬ψ,◦((ϕ ∧ ¬∆)U ψ)}

Fig. 1. The ttm-rules

Rule α A(α)

(�) �ϕ {ϕ,◦�ϕ}

Rule β B1(β) B2(β)

(∨) ϕ ∨ ψ {ϕ} {ψ}

(R ) ϕRψ {ϕ, ψ} {¬ϕ, ψ,◦(ϕRψ)}

β-(�) �ϕ {ϕ} {¬ϕ,◦�ϕ}

Rule κ C1(κ) C2(κ,∆)

κ-(�) �ϕ {ϕ} {¬ϕ,◦((¬∆)U ϕ)}

Fig. 2. The derived ttm-rules

3 The Context-Based Tableau Method

In this section we recall the context-based tableau method that was introduced
in [5,6] and give a complete example of tableau construction.
A tableau for a finite set of formulas Φ is a tree-like structure where each
node n is labelled with a set of formulas L(n). The root is labelled with the
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set Φ whose satisfiability we wish to check. The children of a node n are
obtained by applying one of the rules to one of the formulas in L(n). Nodes
are organized in branches, so that the rules serve to either enlarge the branch
(with one new child) or split the branch with two new children. A tableau
rule is applied to a set of formulas L(n) labelling a node n that is the last
node of a branch. Each rule application requires the selection of a designated
formula from L(n). By means of the α-, β- and κ-rules in Fig. 1, each formula
named as α is decomposed in a unique set, called A(α), and any formula β
is decomposed into two constituent sets B1(β) and B2(β). By application of
an α-rule, we enlarge the branch with a node with label (L(n) \ {α}) ∪A(α).
A β-rule application splits the branch with two nodes with respective labels
(L(n)\{β})∪B1(β) and (L(n)\{β})∪B2(β). In other words, the application
scheme for the α- and β-rules are

∆, α

∆, A(α)

∆, β

∆, B1(β) ∆, B2(β)

For example, the following is a pre-tableau (it is not completed) that first uses
β-(U ) and then (∧) in the right branch.

s, (p ∧ q)U r

s, r s, p ∧ q,¬r,◦((p ∧ q)U r)

s, p, q,¬r,◦((p ∧ q)U r)

The κ-rules work similar to the β-rules for splitting branches, but the second
constituent C2(κ,∆), depends not only on the designated κ-formula, but also
on the context. We call the context to ∆, that is the remaining formulas in
the node of the designated eventuality.

∆, κ

∆, C1(κ) ∆, C2(κ,∆)
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For example, if we use in the above pre-tableau κ-(U ) instead of β-(U ) (where
the context is {s}) the pre-tableau is

s, (p ∧ q)U r

s, r s, p ∧ q,¬r,◦((p ∧ q ∧ ¬s)U r)

s, p, q,¬r,◦((p ∧ q ∧ ¬s)U r)

A formula is elementary whenever it is either a next-formula (i.e. a for-
mula of the form ◦ϕ) or a literal (atom or negated atom). For instance
{s, p, q,¬r,◦((p ∧ q ∧ ¬s)U r)} is a set of elementary formulas.
The rules in Fig. 1 are applied to nodes with at least one formula that is
not elementary, For sets of elementary formulas, the ttm system includes the
following rule that is called (unnext)

`1, . . . , `m,◦ϕ1, . . . ,◦ϕn

ϕ1, . . . , ϕn

where the `i are literals and m,n ≥ 0. For instance

{s, p, q,¬r,◦((p ∧ q ∧ ¬s)U r)}

{(p ∧ q ∧ ¬s)U r}

Note that, the rule (unnext) simulates the jump from one state to the next
one. Note also that for n = 0, the rule (unnext) produces the empty set, then
(unnext) can only be applied to the empty set, that yields again the empty
set. This is a especial kind of rear-cycle in a model.
There are also derived rules (see Fig. 2) for the defined connectives (∨, �, �,
R ) that are obtained from the basic rules in Fig. 1 by using the definition of
each connective.
Tableaux are constructed with the aim of refuting the initial set of formulas. A
node n is consistent iff F 6∈ L(n) and there is no ϕ such that {ϕ,¬ϕ} ⊆ L(n).
Otherwise, n is inconsistent. When a branch contains an inconsistent node
we say that it is closed. Any closed branch is trivially unsatisfiable. Branches
that are not closed are said to be open.
The implemented algorithm consists in a systematic extension/splitting of
branches using the ttm-rules. When no other rule can be applied, the rule
(unnext) is used to jump to a new stage. The algorithm ends when either a

175



Gaintzarain and Hernandez and Lucio

p,�(¬p ∨ ◦p),�¬p

p,¬p ∨ ◦p,◦�(¬p ∨ ◦p),�¬p

p,¬p,◦�(¬p ∨ ◦p),�¬p
#

p,◦p,◦�(¬p ∨ ◦p),�¬p

p,◦p,◦�(¬p ∨ ◦p),¬p
#

p,¬¬p,◦p,◦�(¬p ∨ ◦p),

◦((¬p ∨ ¬◦p)U (¬p))

p,◦p,◦�(¬p ∨ ◦p),

◦((¬p ∨ ¬◦p)U (¬p))

p,�(¬p ∨ ◦p),

(¬p ∨ ¬◦p)U (¬p)

p,¬p ∨ ◦p,◦�(¬p ∨ ◦p),

(¬p ∨ ¬◦p)U (¬p)

p,¬p,◦�(¬p ∨ ◦p),

(¬p ∨ ¬◦p)U (¬p)

#

p,◦p,◦�(¬p ∨ ◦p),

(¬p ∨ ¬◦p)U (¬p)

p,◦p,◦�(¬p ∨ ◦p),¬p
#

p,◦p,◦�(¬p ∨ ◦p),¬p ∨ ¬◦p,
¬¬p,◦((¬p ∨ ¬◦p)U (¬p))

p,◦p,◦�(¬p ∨ ◦p),

¬p ∨ ¬◦p,nextU

p,◦p,◦�(¬p ∨ ◦p),

¬p,nextU
#

p,◦p,◦�(¬p ∨ ◦p),

¬◦p,nextU
#

Fig. 3. A Closed Tableau

cyclic branch is detected or every branch is closed. In the former case, the
model given by the open branch is returned as output. Otherwise, the output
is a message stating that the input set is unsatisfiable.
Regarding the application of the ttm-rules, the algorithm keeps one selected
eventuality (if there is any) to which the rule κ-(U ) is applied. More precisely,

• Between each two applications of the rule (unnext) exactly one (if any)
eventuality is marked as selected.

• The selection function is fair in the sense that no eventuality occurring in
a branch could remain non-selected indefinitely.
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• When the rule κ-(U ) is applied to a node labelled by ∆ and a designated
ϕU ψ, the formula ◦((ϕ ∧ ¬∆)U ψ) –in the right branch– is elementary.
Hence, it is not further decomposed in the current state. Then, (ϕ∧¬∆)U ψ
will become the selected eventuality after the application of (unnext).

The non-selected eventualities are decomposed using the rule β-(U ) and for
the remaining nonelementary formulas there is a unique rule to be applied.

Example 3.1 The figure 3 shows a closed tableau for the set of formulas
p, �(¬p ∨ ◦p),�¬p. The selected eventualities are shown in bold font. The
tableau is obtained by the successive application of the following rules (each
rule is applied to the underlined formula, excepting (unnext) that is applied
to the whole set): (�), (∨), κ-(�), (¬¬), (unnext), (�), (∨), κ-(U ), (¬¬) and
(∨).
In the application of κ-(�), the context ∆ is formed by the formulas
{p,◦p,◦�(¬p ∨ ◦p)}. However, the last formula has not been considered to
write ◦((¬p ∨ ¬◦p)U (¬p)) in the output of the rule κ-(�). This is an op-
timization that was already explained in [6] and has been implemented in
our prototype. The basic idea is the fact that when the context contains a
formula stating that something always holds, the negation of this statement
would never be satisfied. In the later application of κ-(U ), the context is
again the same set {p,◦p,◦�(¬p ∨ ◦p)}. Textually using the rule κ-(U ), the
formula ◦(((¬p ∨ ¬◦p) ∧ (¬p ∨ ¬◦p))U (¬p)) must be in its output. Our
prototype is aware of context repetition, giving ◦((¬p∨¬◦p)U (¬p)) instead.
This formula is called “nextU ” in Fig. 3 due to the lack of space since the
concrete eventuality is irrelevant to close the tableau.

4 System Description

The system ttm is implemented in Haskell ([16,15]) and compiled with Glas-
gow Haskell Compiler ([17]), resulting in an efficient cross-platform implemen-
tation packaged for Linux, Windows, and Mac OS. This prototype is available
at http://www.sc.ehu.es/jiwlucap/TTM.html In this section we describe the archi-
tecture of the prototype ttm (version 1.0) and we also give some Haskell
implementation details.

Regarding architecture, Fig. 4 shows a diagram with the packages
and modules involved in the subsystems of the prototype ttm which have
been built using the Haskell Cabal building and packaging system (see
http://www.haskell.org/cabal/). The input layer –which is responsible of parsing
the input set of PLTL-formulas into the Haskell internal representation– is
shown on the left-hand part. When a syntactical error is found, the parser
reports it to the user through the user interface. This layer is constructed
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Fig. 4. The ttm System Architecture

with the aid of the Alex (http://www.haskell.org/alex/) and Happy packages
(http://www.haskell.org/happy/).
The right-hand part of Fig. 4 represents the graphical user interface archi-
tecture. First, the graphviz package (http://projects.haskell.org/graphviz/) is
used for visualizing graphically the output tableau that is built by using
the rules and following the algorithm explained in the previous Section
3. A partial view of the graphical tableau that the user can generate is
given in Fig. 5. Second, the Haskell binding to Gtk+, called Gtk2Hs
(www.haskell.org/haskellwiki/Gtk2Hs), is used for constructing the cross-platform
graphical user interface.
The core algorithm constructs a tableau, for the input set of PLTL-formulas.

data TableauNode = TableauNode {
markedFormulas : : Set ,
unmarkedFormulas : : Set ,
s e l e c t i o n : : [ PLTLFormula ] ,
e v e n t u a l i e s : : Set

}

type Branch = [ TableauNode ]
type Tableau = [ Branch ]

A tableau is represented in Haskell as a list of branches, where a branch is a
list of nodes. Each node contains four items of information. The first is the
set of formulas to which a rule has already been applied. We say they are
marked. The second is the set of unmarked formulas of the node. The third
is the list of selected eventualities, that can be empty of a singleton, whereas
the fourth is the set of all the eventualities that still remain selectable in the
branch to which the node belongs.

so lveTableau : : Tableau −> Tableau
so lveTableau [ ] = [ ]
so lveTableau (b : bs ) = solveBranch ++ solveTableau bs
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where so lveBranch = i f i s C y c l i n g b
then [ b ]
else i f cons i s tentBranch b

then so lveTableau ( extendBranch b)
else [ ]

Following the method explained in the previous Section 3, the refutation stops
as soon as the first open branch is found. A tableau branch is open whenever
it represents a model and every model is cyclic. The model represented by
this open branch is returned to the user. Hence, in the satisfiable case it
avoids the computation of the remaining branches. Otherwise, the system
must construct the whole closed tableau.

extendBranch : : Branch −> Tableau
extendBranch b

| nonElementary == [ ]
= [ b ++ [ unnext lastNode ] ]

| ( not . n u l l ) s e l e c t edEv && ( not . i sNext . head ) se l ec tedEv
= [ b ++ [ n ] | n <− applyRule ( head se l ec tedEv ) lastNode ]

| otherwise
= [ b ++ [ n ] | n <− applyRule ( head nonElementary ) lastNode ]

where lastNode = l a s t b
se l e c tedEv = s e l e c t i o n lastNode
nonElementary = nonElementaryFormulas lastNode

The construction of the tableau is carried out by extending the branches. To
this end, if the last node is exclusively formed by elementary formulas, the
rule (unnext) is used to obtain the node by which the branch is enlarged.
Otherwise, a tableau rule must be applied to the last node. Depending on
whether there is a selected eventuality that is not a formula of the form ◦ϕ
(called a next-formula) or not, the formula designated for the rule application
is either the selected formula (the head of the list selectedEv) or the head of the
list of all nonelementary formulas in the node.

applyRule : : PLTLFormula −> TableauNode −> [ TableauNode ]
applyRule formula node
= case formula of

(And p q ) −> newNodes [ [ p , q ] ]
(Or p q ) −> newNodes [ [ p ] , [ q ] ]
( Eventual ly p)

−> i f [ Eventual ly p ] == se l ec tedEv
then let newEv = negateContext ‘U‘ p

in newNodes rule2 ( [ p ] , [ Not p , Next newEv ] , Next newEv)
else newNodes [ [ p ] , [ Not p , Next ( Eventual ly p ) ] ]

.

.

.

The application of a tableau rule to a designated formula an a node depends
on the designated formula and gives the list of the new nodes that must be
used to split/enlarge the branch. For formulas of the form (And p q) and (Or p

q) the function newNodes respectively constructs the nodes corresponding to the
sets [[p,q]] and [[p],[q]]. However for eventualities (e.g. �p in the code above)
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the calculation of the new nodes depends on whether the designated formula
is the selected one or not, to construct the new nodes that correspond to the
application of the rule κ-(�) or β-(�), respectively. The function newNodes rule2

is identical to newNodes excepting that the selected eventuality in the new nodes
remains unchanged by the latter whereas the former changes the selection to
be the eventuality newEv (which is the eventuality constructed in the rule κ-
(�)).

In the early stages of the prototype, it performed competitively in spite
of the lack of optimization. We believe that Haskell laziness has been a great
advantage, since it was able to construct tableaux with several thousands of
closed branches in a few minutes and with a low space complexity. This is due
to the lazy evaluation (of Haskell) that keeps exactly one tableau branch at a
time. Our first prototype showed that a huge explosion of identical branches
occurs very frequently. The most significant optimization techniques used in
the current version of the prototype is devoted to avoid the re-calculation of
closed sub-tableaux (or sub-trees). The optimization consists in storing un-
satisfiable sets of formulas, which are the root of closed sub-tableaux that
have been already constructed. Consequently, we refactor data structures for
efficiently loading and comparing branches, which are sets of sets of formulas.
Hence, the data structures used to represent the sets of PLTL-formulas play
an important role in the overall performance. At each step of the tableau con-
struction, multiple set operations take place like e.g. checking for inconsisten-
cies or adding the constituents of a formula after a rule application. Two repre-
sentations were mainly taken into consideration (the packages for both can be
found in http://hackage.haskell.org/packages/archive/containers/latest/doc/html):

• The package Data.Set (in /Data-Set.html) –which is based on a balanced
binary tree– requires the base type only to be ordered and comparable 4

that is straight forward on a Haskell algebraic data type.

• The package Hashmap (in /Data-HashSet.html) provides a persistent im-
mutable set implemented over a hashmap (Data.IntMap.IntMap). The data
type requires, besides being comparable, a hashing operator which maps
any object to an integer. The hashing operator uses a hashing composition
function to combine the hashes of complex objects.

The current version 1.0 of ttm uses the package Hashmap to construct hash
tables that represent sets of PLTL-formulas. This choice is due to the fact that
hash tables provide optimal set operations –that are performed very frequently
in ttm–, while allowing optimal sequential access to the items of a set. Indeed,
using hash tables, we represent sets of PLTL-formulas in a hierarchical way
that allows efficient access to e.g. all the elementary formulas in the set, or

4 For proper PLTL-formula comparison our system transforms the formulas to a canonical
form.
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all the formulas whose outermost connective is ◦, or all the eventualities, etc.
To gain efficiency in this kind of access to some particular subset of a set of
PLTL-formulas is crucial for the context-based tableau method explained in
Section 3. Furthermore, recent developments of Haskell on implementation of
hash tables allow efficient updating that does not copy the entire structure,
but only the changed path. Therefore, in ttm this can be used to share data
across different branches.

5 The ttm Functionality

This section is devoted to the usage of the ttm tool. The system ttm has
been integrated with two different interfaces for different user purposes. The
package TTMGUI provides the user with a Graphical User Interface, whereas
the package TTMCLI is a Command Line Interface for ttm executions.
The graphical interface TTMGUI consists of three main sets of components,

Fig. 5. The ttm Graphical User Interface

which respectively provide a formula editor, an output view, and a set of but-
tons that enables the user to obtain different outputs from the input formulas.
The formula editor makes a syntactical check of the PLTL formulas entered
by the user, helps inserting the PLTL symbols encoded in Unicode character
set (UTF-8 5 ), and allows to load set of formulas into text files and also to
open previously loaded files. The interface includes buttons for the following
subset of the ttm capabilities: the satisfiability test (including model calcula-
tion when the test results is positive), the counter of the number of generated
branches, and the view of the whole tableau. The output view serves to dis-
play the computed results in pretty and useful ways. Fig. 5 depicts the image
of TTMGUI after entering the input in the left-hand and then clicking the
buttons “Satisfiability Test” and “View Tableau”. For space reasons, in the

5 The UCS Transformation Format - 8 is a multibyte character encoding for Unicode
backward-compatible with ASCII.
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left-hand of Fig. 5 we show a partial view of the whole tableau.

Fig. 6. The ttm Command Line Interface

The command line interface TTMCLI provides an interactive mode and a non-
interactive mode. The interactive mode provides a prompt where the user
can insert a sequence of commands. However, the non-interactive mode only
runs a single command specified through the available options. The interface
TTMCLI was a requirement to create a set of tools which help the testing
and analysis of the behavior of the different optimizations of the ttm system.
There are commands for testing the satisfiability (getting a model, if possible)
of a PLTL formula (model command), for computing the number of branches
(branches command), for viewing the whole tableau (tableau-view command),
for exporting the tableau in dot language 6 (tableau-dot command), for dy-
namically changing the behavior of ttm e.g. changing the data structures
used to represent the sets of PLTL formulas (e.g. binary trees: Data.Set or
hash maps: package hashmap), and for disabling/enabling some optimizations
like branch repetition removal and formula comparison using negation normal
form. Fig. 6 shows the result of testing the satisfiability of the input set in
file sat2.txt, which contains the set in the left-hand side of Fig. 5.

6 Conclusion and Future Work

We have presented the version 1.0 of the system ttm –which is available
at http://www.sc.ehu.es/jiwlucap/TTM.html– that implements the context-based
tableau method for PLTL introduced in [5,6].
Some refactoring of the data structures used in the very preliminary version
of the prototype have already proved to be valuable for efficiency. However,
more experimentation and comparison with other implementations remain to

6 DOT is a plain text graph description language
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be done. In a near future, we plan to use the ideas of “scientific benchmark-
ing” proposed in [12] to compare the system ttm with other implementations
of decision procedures for PLTL. Firstly, we shall compare ttm with the two
tableau-based implementations included in PLTL module of the Logics Work-
bench Version 1.1 (http://www.lwb.unibe.ch/): the two-pass tableau of Janssen
([14]) and the on-the-fly tableau of Schwendimann ([22]). Secondly, we also
plan to experiment and compare with the system TRP++ ([13]) that is also
a PLTL theorem prover that it is not tableau-based but it implements the
temporal resolution procedure introduced by Fisher ([4]). We hope that all
these experiments would test our implementation of the context-based method
and would help us to identify potential improvements whose implementation
would result in a measurably better prototype. We plan to be ready to present
some profiling analysis and benchmarks at the workshop.
Additionally, we plan to experiment with the parallel computation of tableau
branches. Concretely, we are considering the GHC parallelization package
(http://hackage.haskell.org/packages/archive/parallel/latest/doc/html/Control-Parallel.html) as a good tool for
this end.
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